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Abslract. The general Hamiltonian for the SU(ZJ,,-invariant arbitrary-spin Heisenberg 
chain is presented. Some of these interactions are shown to satisfy braid group relations 
and the Temperley-Lieb algebra relations. Spin 3 is explored in more detail and, in this 
case, a general solution to the braid conditions is known in the generic sense. 

1. Introduction 

In recent years much progress has been made in the construction of integrable models 
of statistical physics in two dimensions and spin chains in one dimension [ l ,  21. An 
essential tool in the search for such models was the construction of representations of 
braid groups, the Hecke and the Temperley-Lieb algebras in terms of observables of 
the system [ 3 ] .  An interesting class of models can be obtained with q-deformations 
[4] of the SU(2)-invariant spin chain. Some properties of the spin-1 model have been 
studied by Batchelor et al [SI. In this paper we shall study the SU(2) deformed chain 
for arbitrary spin. We shall study spin $ in more detail. 

We recall the defining relations for the SU(2) deformed algebra (hereafter referred 
to as SU(2),). The generators J+,  J -  and J 3  satisfy 

[ J ' ,  J*]  = *J* [J' ,  J - ]  = [ 2 J 3 ]  (1.1) 

where 

In the tensor product V, x V,,, of spaces V, and V,,, we can define the coproduct 

The Casimir operator is given by 

C = J - J ' + [ J ' + i ] 2 - [ f ] 2 .  (1 .4)  
!ts .igenvfi!ge 5 in !he irreducible representation of spin j is 

c, = [j+f]' -[$I2 = [ j ] [ j +  I]. (1.5) 

We introduce the Hamiltonian for the SU(2), spin chain of n - 1 sites 
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where Ih is the most general polynomial function of the Casimir operator A,,+,(C) 
defined on the vector space Vh x V,,, . Since A is a homomorphism, we can write 

A h , k + i ( c ) =  X 1). (1.7) 

We assume that site n - 1 is followed by site 1, so that J ,  in (1.7) is to be interpreted 
as J , .  

For simplicity, from now on  we shall often denote 

Ih = I A k , h - j ( c )  = c. (1.8) 
It is well known [ 4 ]  that irreducible representations of SU(2) ,  are classified in the 
same way as those of SU(2) .  This means that we have a ( 2 j +  1)-dimensional representa- 
tion with j = 0, f, . . . with a possible basis 

lid 
J * l j m ) = J [ j r  m ] [ j *  m + l l l jm * I )  

m = j ,  j -  1,. . . , - j +  1, - j  

J’ijm) = ml j m ) .  

Thus in the tensor product of spaces V ,  x V,  we can choose the basis 

l j , m , j 2 m 2 ) = l j , m ~ ) x l j 2 m ~ ) .  (1.10) 

J = j ,  + j 2 , .  . . . Ii, -J21. 

This tensor product can be decomposed into its irreducible components denoted by 

In each component we can form eigenstates of J 3  

J 3 / J M j l j 2 ) =  MIJMj, jJ  M = J , J - I , . . , ,  -J. (1.11) 

lJMj1jJ = Z c,:”,,j,m,lilml)lJ2m2). (1.12) 

The connection between the two basis is given in terms of Clebsch-Gordan coefficients 

m,.m2 

The explicit expressions for Clebsch-Gordan coefficients are known [ 4 , 6 ] .  From now 
on we shall treat interactions of the same spin 

jl = j 2  = j .  

This means that because of (1 .5 )  the Casimir operator on the space V, x V,,, will have 
the following eigenvalues: 

c , = [ J ] [ J + l ]  J = O ,  1 , .  . . , 2 j  (1.13) 

or 
c,=o CI = U21 c 2 = [ 2 ] [ 3 ] ,  . . . ,  ~ ~ ~ = [ 2 j ] [ 2 j + l ] .  

2. SU(Z),-invariant interaction 

Now we are able to write the most general local interaction I. Linearly independent 
contributions are given hy 

1, e, c2, . . . , C2J. 

( C  - C O ) (  c - c , ) ,  . . . , ( e  -c2,;)  = 0. 

This series terminates because of the vanishing of the characteristic polynomial 

(2.1) 
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In other words, C"" is a linear combination of 1 x 1, C, C 2 , ,  , C2;. For convenience, 
we write the most general interaction in the following polynomial form: 

I = m o l  + a , ( C - c , ) +  a,(C -c , ) (C  -c*, - 1 ) .  . . + a , ( C  - c y ) .  . . ( C - c , ) .  (2.2) 

Sometimes it may be useful to use another representation for the interaction where 
projector operators are chosen for the basis. More precisely, we introduce projectors 
P' on irreducible components with deformed angular momentum J. Owing to (1.12), 
their matrix elements are connected with Clehcch-Gordan coefficients h y  the expression 

(2.3) p ~ , , , , . , , , ,  = (jmLjm21p'ljnljn2) = CK,m2cj:jn2. 
On the other hand, they are simply related to the Casimir operator. In fact 

I t  is evident from construction that 

P"IJM) = S,,.IJM). 

From this relation or from the characteristic polynomial it follows that 

P". P"= &,P'. (2.6) 

We can now write the decomposition of the interaction in terms of projectors: 

3. Braid groups, the Temperley-Lieb and the Hecke algebras 

We are XGW in:ere::ed in findlxg particc!ar in:erac!inns *whnse !oca! oprre:nrs 

1 k  k = 1, . .  . , n-1 (3.1) 

are elements of braid groups, the Hecke algebra or the Temperley-Lieb algebra. 
A representation of braid groups is given if the operators I, satisfy 

I k f k + t r k  = f k + , l k I h + ,  i =  1 , .  . . , n - 2  
( 3 . i j  

lkIl  = I l l k  [ k - / [ a  2. 

The Hecke algebra is given if in addition we have the condition 

(fh+1)(Ih-9)=O. 

The Temperley-Lieb algebra is given by the relations 

T k T k + t T k  = Tk 

T: = PTA 

ThT = TT, jk - I )  2 2. 

(3.3) 

(3.4) 
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The Temperley-Lieb algebra is a special case of the braid group, which can be checked 
using the substitution 

(3.5) p = q - 1 / 2 +  112 Ih  =& Th - 1 4 .  

Now we consider the interaction with the coupling constant: 

A. = [2j+ 11 A , = A 2 = ,  . . AZi =O. (3.6) 

This implies that only spins coupled to the total spin zero can interact. Explicitly 

I = +[2j+ l]Po (3.7) 

01 

We can show that this operator satisfies the Temperley-Lieb algebra (3.4) with 

p = *[2j+l] 

The second condition (3.4) is satisfied owing to the projector properties (2.6). To 
show the first condition (3.4), we calculate an explicit formula for the matrix element 
of I in the basis 

(3.10) 

( 3 . 1 1 ~ )  

thus 

I,,,,..,", = *~-1~"'-"~S,,+m,.oSn,+",.04m'+n~. (3.11b) 

Now the Temperley-Lieb condition can be explicitly checked. The explicit matrix 
(3.11b) was written down by Batchelor et a/ [SI, but now we understand its relation 
to the SU(Z),-invariant Hamiltonian (owing to (3.6), (2.7) and (2 .5)) .  

Now we shall show another interaction which satisfies braid-group requirements. 
It is well known that a solution I of the braid condition can be obtained from a 
solution R of the Yang-Baxter equation. The connection is 

I = P R  Ih=Phk+IRkh+l (3.12) 

where P permutes vectors defined in tensor products, e.g 

p I 2 l j m J  x IjmJ = IjmJ x ljmJ. 
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R in (3.12) satisfies the Yang-Baxter relation 

R I > R I ~ R z =  R,,R,,R,2 (3.13) 

and also 

P R d - ‘  = R P I X ) ~ ~ )  

where P ( k )  denotes the integer to which the permutation P carries the integer k 
The check is straightforward. We can use the R matrix from the theory of q-deformed 

algebras, which is well known to satisfy the Yang-Baxter equation. This matrix is 
explicitly known [4,7,8], hence we can write the corresponding I with an arbitrary 
constant a: 

I = (I 1 ( - l ) J q J ~ J + ” P J .  (3.14) 

Comparing (3.14) with (2.7), we find that our Hamiltonian satisfies braid relations for 

(3.15) 

The Hecke relation is not satisfied for q #  1 because all eigenvalues are different, 
contrary to the implications of (3.3). It is interesting to note that for q = l  our 
Hamiltonian has the simple form 

J 

J J I J t l )  h ~ = n ( - l )  q . 

I = (1 1 ( - l )JPJ (3.16) 

and for a = + l  we have the Hecke algebra. For spin 1, these classical results coincide 
with the result of Batchelor et a/ [ 5 ] .  For spin ; this Hamiltonian does not fall into 
the class claimed to be integrable by Chubukov and Khveschenko [9]. This Hamiltonian 
has a particularly simple matrix form 

J 

f m l m > , ? 2 1 n z = i ~  (-l)J(pJ)m,mz n l n i  
J 

=*1 (-l)’C::,m,C:,&, 
J 

Owing to the symmetry property 
J M  - JM c,,,,?”, - c,m,,m,(-1)2J-J 

rm,m2,f l ,n2=n(- i )  L, , ,A~~,  
and to the orthogonality property of Clebsch-Gordan coefficients 

a = + l .  (3.17) 

This relation IS the explicit matrix form for the Hamiltonian which satisfies the Hecke 
algebra for arbitrary spin ( q  = 1). 

2, 

4. Higher symmetry 

An interesting question is the relation of integrable points and higher symmetries. 
Consider the Temperley-Lieb point first. Here all non-singlet states are degenerate 
and thus it corresponds to the embedding 

S U ( 2 ) c  S U ( 2 j + l ) .  (4.1) 
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Of two spins which form the interaction, one is represented in the V,,,, or the 
fundamental representation of SU(2j-b 11, and the other in its complex conjugate V2,+, . 
Of course, 

(4.2) 

in agreement with the degeneracy of the Temperley-Lieb interaction. For spin 1 it 
coincides with a case remarked on by Batchelor et a/ [5]. 

v,,, x v2,+, = v , i  yz-, 

Now we consider the braid solution of (3.15). 
All eigenvalues for q # 1 are different, so no embedding is possible. This is an 

interesting situation where we have an integrable point but no higher symmetry. Of 
course, an exception is the classical case 

q = l  A, = a (- I)’. (4.3) 

For general a it satisfies the braid group and for a = i l ,  the Hecke algebra 
In both cases it corresponds to the embedding 

SU(2)c  SU(2j+ 1) 

For this case both spin operators in the interaction are realized in the fundamental 
representation V,,,. Owing to 

v2,+1x v,+, = v,cz,+,,+ yJ+1)(2,tl) (4.4) 

we explain the symmetry content of the degeneracy of even and odd total spins. 
This case is interesting for two reasons. For the quantum case we have an example 

of an integrable point which does not correspond to a higher symmetry. On the other 
hand, the classical integrable Hamiltonian corresponds to a higher symmetry, contrary 
to its quantum generalization. 

5. Spin 

Thus far we have treated the questions for general spin. Now we want to explore spin 
5 in more detail. We shall present two explicit representations of the SU(Z),-invariant 
interaction: one in a matrix basis and the other in terms of spin operators. According 
to equation (2.2) a possible representation for the interaction operator is 

1 .  

I = m o l +  a , (C  - Cl)+ a2( c - CJ(C - e,) + m , ( C  - C , ) ( C  - CJ(C -q). (5.1) 

It is useful to introduce a new basis in the space of invariants: 

I = P o l  +PILI +P2L2+P3& 

3 
L --c+:1 

’-2[3] 

( C -  e,)( c -c , )+%l L,=-  
[31[212 

3 (5.2) 

1 
L 3 = -  ( C  - C,)(C - c J ( C  - C , ) + B l  

[212[312 
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The operators L, ,  L, and L, can be considered as  16 x 16 matrices in the space 

These matrices can be expressed for every q in terms of the following 19 numerical 
matrices (q-independent). There are ten diagonal matrices D, ,  D,, D,, D4. D,, Db, 
A,, A,, A4,  A,. The elements of the diagonal are as follows (for clarity, we separate 
four blacks): 

D, : 
D,: 
D,: 
0,: 
D,: 
D6: 
A*: 
A,: 
A,: 
A,: 

1000 
0100 
OOiO 
0001 
0000 
0000 
0100 
0010 
0001 
0000 

0000 0000 
1000 0001 
OOOi io00 
0000 0000 
0100 0010 
0010 0100 

-1000 0001 
0001 -1000 
0000 0000 
0010 0-100 

0001 
0010 
0iOO 
1000 
0000 
0000 

00-10 
0-100 
-1000 

0000. 

(5.3) 

Now we describe the non-diagonal matrices. One group contains M , ,  M 2 ,  M,, M4,  
B 2 ,  B , .  The common feature of these matrices is that non-vanishing block diagonals 
are nearest to the left and to the right of the main diagonal. In these blocks non-zero 
diagonals are nearest to  the main diagonal when looked from the inner side of the 
matrix. For example, M ,  is 

0 
i 0  

0 0 0  0 0 
0 0  

0 1  0 
0 0  0 0 0  0 

0 0  0 0  
0 0 0  

0 0  0 

0 0 0  0 1 0  
0 0 

0 0 0 1  0 

0 0  0 0  

0 0  

0 0  
0 - 

(5.4) 



588 S Meljanac er a1 

Symbolically, 

M,: 100 000 010, 

M2: 010 101 010 
M,: 001 000 100 
M4: 000 010 000 

Similarly, 

B2:  010 -101 0-10 
B,: 001 000 -100. 

( 5 . 5 )  

The next group of matrices are N,, N2 and B4. In the description of the preceding 
group one has to replace the black diagonal first left and first right with the second 
left and second right. Similarly, in these blocks, the diagonal nearest to the main 
diagonal has to be replaced with the second nearest. 

Symbolically, 

N,: 10 01 

N 2 :  01 10 (5.6) 

B4: 01 -10. 

Finally, there is the matrix P. Its only non-vanishing elements are 

p t , l b =  p16,1 = 1. (5.7) 
Now we can give an explicit expression of the invariants L, ,  L2 and L, in their matrix 
basis: 

[Dl-Ds-D6]-2 

+ (%-:)[2D,+ D6] - sinh 3A[ A,+ A, + A,] 

sinh A sinh2A - sinh A[A, +2A6] -- A6-- B2-sinh2AB, 
~ 3 1  

4 sinh2A 
+2( $-A) M,+2 sinh2 A M3 -~ 

3131 
L, = (SS) ,  -;SS+6(sinh 2A)’D3+6[(sinh 2A)2+ (sinh A)’]D, 

4(sinh A ) ,  - 
[31 

+ 3 sinh 4A A, + 3(sinh 4h + sinh 2A)A, 

2 sinh 2h 
sinh 4A -2 sinh 2h - 

[31 

I-coshAcosh2A ( 5 . 8 )  

3(sinh 3A +sinh A )  
B2 m + [ -12 ( sinh- 3;)2 +-- 6c;;rA 21  M4 - 

-3 sinh2A B,+6(sinh A),N2 
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D6-sinh 3A A,-sinh A A,+Z(sinh A)2M3 

Here S is the classical spin.; operator and the parameter A is related to q from (1.2) 
by 

q = eA. 

Physical models are usually expressed in terms of the usual SU(2) spin operators. 
For this purpose we present the relation of our matrix basis to the basis with spin 
operators as elements. First we introduce the following operators: 

n k , k + l  =J;J;+l +J:J:+n 

qh+, =f[(J;)'(J;+,)J+ ( J ; ) J ( J ; ) ; ]  
A z k i l  = ~ [ ( J ~ ) ' ( J ; + ~ ) ' - ( ~ ; ) ' ( J ~ + ~ ) ' ]  (5.9) 

a. - r ,  r x  r x  ,~ .Y ,Y ,2 I r x  .Y .Y r x  ,2, 
Y k , k + I  - L I J  k . l h + l  T J k J  k t l l  - I J h - ' h + I  - J  k J k + l l  1 

where i, j = 0, 1, , , . denote the power to which the spin operator is raised. For simplicity 
we shall omit the indices k, k + 1 and write 

a r k + ,  =n s f , k + ,  

(5.10) 

Second, using this notation we can decompose the matrix basis in terms of spin 
A:,,+, = AU @ k , k + L = @ .  

operators as follows: 

D -1 a;xt. j  K = 1,.  . . , 6  
- i.j 

= (O,o), (1,1), (2,2), (3,3). (0,2), (1,3) 
(5.11) 

noo ",, ail Ojj aui Oij  

K = 2  8 6 
9 3 I I 5 5 K = 3  64 3 8 6 16 -a  
I I I I I - 1 K = 4  128 288 8 I8 16 36 

Y 9 K = 5  128 31 8 4 
81 SI I - f  -2 e K = 6  128 -35 

A, =x aYAU M =2,3,4,6 

I I 1 I I 1 
-,6 

- _-  s 18 16 
- - K = l  128 288 
-$ -~ I -~ I -f 5 2 

~ -. - -- 
~ _ _  - _  - -- 

- -~ -- I 
2 16 

16 

- 81 - 81 

- 

i.1 

0 0 ,  0 0 3  a21 a 3 2  
3 I ?1 I 

12 3 16 - 4  
3 I 7 2 M = 3  s - 5  -i; - 3  

I I I 
4 

8 1  9 u . 

M = 2  -- 

- - M = 4  -& 24 24 

M = 5  -35 s U 2 

M -E  a;{nX'+HC) 
A - L j  

(5.12) 

(5.13) 
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aDo ao2 a, ,  a21 
A = l  3 2  12 3 6 

I - 1  -1  

;2 0 A = 3  96 6 

A = 4  64 -E 4 4 

3 I 1 , 
9 3 

I I 

- -- - . 

-- A = 2  16 

- -~ . 

- 29 5 I I - 

B , = ~ a ~ { O A u + ~ c }  K = 2 , 3  
1.1 

(5.14) 

K = 2  - I  
K = 3  4 - 

N2 = at@X” + HC (5.15) 

I I -- 

t., 

a 2  --I .io=-; I ,  - 6 

E,, = 4mA”. (5.16) 

Finally we mention the interesting question about the general solution of braid- 
group conditions. A systematic analysis of these conditions for spin 2 shows that there 
are not other generic solutions besides those already mentioned. We do not exclude 
solutions for special values of q. Details will be given elsewhere. 

6. Conclusion 

We have presented a general and arbitrary spin Hamiltonian for an n-dimensional 
spin chain which is invariant under the SU(2), algebra. For two special values of 
coupling constants local interactions satisfy the Temperley-Lieb algebra. In addition, 
another one-parametric family of interactions that satisfies braid-group requirements 
has been found. For the classical value of q ( q  = 1) and for two values of coupling 
constants we obtain Hecke relations. It is interesting to note that for q # 1 such points 
do not always correspond to a higher symmetry. 

We have considered the case of spin $ in more detail. Two additional representations 
of the Hamiltonian have been written: one is in terms of matrix basis and the other 
in terms of spin operators (‘physical basis’). For spin 2 we have found that solutions 
presented in the first part of the paper are in fact general solutions to braid-group 
requirements in the generic sense. 
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